
Database Architecture
 Fourth Edition

© Copyright 2005 - Wingenious - All Rights Reserved
This document is copyrighted material. It may not be distributed without prior approval from the author.

Questions, comments, and suggestions are invited. Correspondence should be sent to dba@wingenious.com.

mailto:dba@wingenious.com

Database Architecture Wingenious

Database Architecture 2

Table of Contents:
Introduction 3
Background 4

Data Types 5
Null Values 7

Naming Conventions 7
Normalization 10

Relationships 10
Primary Keys 11

Foreign Keys 11
Relationships (Again) 12

Self-Referencing Tables 15
Indexes 16

Concurrency 16
Audit Trails 17

Standard Fields 18
Standard Routines 19

Standard Triggers 19
Standard Stored Procedures 20

Standard User-Defined Function 21
Standard View 22

Generated Middle-Tier Code 22
Bulk Relational Data 23

General-Purpose Routines 24
T-SQL Coding Standards 28

T-SQL Code Examples 33
Conclusion 38

Appendix 39

Database Architecture Wingenious

Database Architecture 3

Introduction:
The database architecture is the set of specifications, rules, and processes that dictate how data is
stored in a database and how data is accessed by components of a system. It includes data types,
relationships, and naming conventions. The database architecture describes the organization of
all database objects and how they work together. It affects integrity, reliability, scalability, and
performance. The database architecture involves anything that defines the nature of the data, the
structure of the data, or how the data flows.

This document is intended to be a fairly comprehensive description of a database architecture
proposal. The specific database architecture being suggested may not be a perfect fit for every
environment. However, even if it does not meet all the needs of a particular situation, it should
provide some valuable ideas and important points of consideration.

The database architecture proposed here is the result of much research and practical experience.
The advice of many industry experts was gathered from several different sources. That advice
was merged with day-to-day experience building the database architecture for a new company
from the ground up. The company, a growing data processing services firm (totally separate
from Wingenious), is currently using a large custom software package that is based upon a
database architecture very much like this one.

This database architecture has served the business mentioned above very well since it was
adopted there in 2001. As of late 2005, the company maintains roughly 30 databases on three
separate servers. The databases contain roughly 1500 tables with roughly 250 million records.
The main database contains about 200 tables with about 50 million records. It’s used mainly for
OLTP and large batch processing chores, but it also handles some OLAP tasks. DBA duties are
greatly simplified and extremely efficient largely due to dynamic routines that are made possible
by the consistency of the database architecture.

This database architecture is intended to be generic and applicable to any business. It addresses
only the back-end of a system, leaving the front-end choices for others to debate. The various
options for presenting data to users are beyond the scope of this document. This document
discusses the database itself primarily, but it also touches on getting data to a middle tier of a
multi-tier system. The information should be beneficial to a DBA or a software developer, and
especially a person whose job includes aspects of both positions.

This document was originally written several years ago and it has not been thoroughly revised
since then. Wingenious continues to follow the general principles outlined here, but it does not
necessarily follow every specific practice. The standards (such as using prefixes) have evolved
over time, but Wingenious remains committed to ensuring consistency within a database.

Database Architecture Wingenious

Database Architecture 4

Background:
This document assumes that the reader is familiar with basic database terminology and usage.
The database terms table (file), row (record), column (field), and so forth are not defined here.
Most readers interpret the specific word pairs above as synonyms. They are very widely used
interchangeably, including in this document.

This document contains some introductory material, but even experienced database developers
may find some useful tidbits here and there.

This document was written with SQL Server in mind. It refers exclusively to the objects and
tools available in that environment. The vast majority of the topics are applicable to both SQL
Server 2000 and SQL Server 7, but a few things are specific to SQL Server 2000. Still, several
of the core concepts are also applicable to other relational database systems.

Any lengthy discussion of SQL Server databases eventually involves Transact-SQL (T-SQL).
T-SQL is the custom SQL implementation of SQL Server. This document addresses many
points in the context of T-SQL. Many elements of the language are mentioned and used to
provide a frame of reference for examples. Although familiarity with T-SQL would be very
beneficial to understanding, a familiarity with standard SQL would also help.

There are many resources available for information about SQL Server and T-SQL. The Books
Online (BOL) provided with SQL Server is an excellent reference. There are dozens of printed
books and a few e-books, available from many vendors, covering a variety of SQL Server topics.
There are printed newsletters and printed magazines available for subscription. There are e-mail
newsletters and e-mail tips available for free. There are several web sites devoted to SQL Server
and many major technology news and information web sites have sections devoted to coverage
of SQL Server topics. The Microsoft web site for SQL Server at http://www.microsoft.com/sql
has a wealth of helpful resources. A quick web search for any SQL Server topic is likely to find
many interesting pieces of information.

Several of the SQL Server web sites have discussion forums where questions can be asked and
answers can be debated. However, the debate is rarely useful. It’s often difficult to distinguish
good advice from mere opinions stated as facts. The broader the topic (database architecture is
definitely a broad topic), the more divergent the opinions and the more heated the debate. The
contentions often dwell on theory and take on a dogmatic tone. This document stresses a very
pragmatic approach to database architecture matters.

http://www.microsoft.com/sql

Database Architecture Wingenious

Database Architecture 5

Data Types:
SQL Server supports a variety of data types. Half of them are better left unused. There are three
basic categories of data types: character (string), numeric, and special.

For many applications, string (character) fields contain the majority of the data. SQL Server has
several options for string values. The choices are fixed-length (up to 8000), variable-length (up
to 8000), and variable-length (up to over two billion). There’s also a Unicode format (using two
bytes per character) for each of these choices. The Unicode formats provide some compatibility
with international operating systems, but they have only half the capacity.

Using variable-length strings (up to 8000) is the preferred choice because of some limitations
with the other two choices. This format (SQL Server data types varchar and nvarchar) provides
more than enough capacity for most character storage needs, and it offers the most consistency
with the string handling of other languages and environments.

The fixed-length string format (SQL Server data types char and nchar) is applicable only under
very specific circumstances. It should be applied only when every character position will be
used in every record (such as with single character values). Any unused character positions are
filled with trailing spaces. This can lead to bizarre and inconsistent behavior when comparing
and concatenating strings (see below).

The variable-length string format that allows over two billion characters (SQL Server data types
text and ntext) requires special handling in T-SQL. In some situations this string format may be
necessary, but it should be fairly rare to need to store massive amounts of raw text in a database.
Generally, when such large amounts of text are involved, it becomes necessary to include
formatting. It may be better to store formatted documents outside of the database and store only
references to the documents in the database. In addition, some front-end environments may not
have a native data type capable of handling this string format.

Always keep in mind that T-SQL does something strange with strings. For some operations, it
appears to do an automatic trimming of trailing spaces. When checking the length of a string
(with the LEN function) or comparing strings, trailing spaces seem to be ignored. However,
when concatenating strings, trailing spaces are not ignored. The automatic trimming is an odd
behavior that should not be relied upon, especially when there is an explicit way to do the same
thing. Further, it’s difficult to understand why the odd behavior is implemented inconsistently.

Although numeric fields may not contain the most data for a typical application, they very often
contain the most important data. There are two kinds of numbers that an application might use:
integer values and decimal values.

Database Architecture Wingenious

Database Architecture 6

SQL Server has four different sizes for integer values. The sizes are 1-byte (tinyint), 2-bytes
(smallint), 4-bytes (int), and 8-bytes (bigint). When selecting one of the sizes, always choose the
larger size if there is any doubt about exceeding the range of possible values for the smaller size.
However, be cautious about choosing the 8-byte size. Many front-end environments do not have
a native data type for 8-byte integers. A .NET-based front-end does, but using 8-byte integers
could prevent other options.

SQL Server has several options for decimal values. The main difference between the options is
whether the decimal point is fixed or floating. Unless an application needs astronomically large
or microscopically small values, there is no need for floating-point values (SQL Server data
types float and real). The problem with floating-point values is that they are not exact. Some
values may not be exactly represented in floating-point format. This can lead to complications
with selecting records and rounding the results of calculations. The vast majority of needs for
decimal values can be handled using the fixed-point format. SQL Server provides data types
specifically for financial purposes (money and smallmoney), but it’s preferable to explicitly
define the precision (total number of digits) and scale (digits to the right of the decimal point) for
decimal values. This can be done with the SQL Server data type decimal (also called numeric).

In general, special data types should be avoided. They often complicate front-end development,
limit front-end choices, and restrict options for data import, export, and migration. SQL Server
data types such as binary, varbinary, image, timestamp (or rowversion), and uniqueidentifier are
examples. Many databases do not need the features provided by these data types. However,
there are some special data types that are too beneficial to ignore.

The most useful special data types are datetime and smalldatetime. The two data types differ in
their accuracy and storage requirements. The smalldatetime data type is usually sufficient. The
use of these data types may complicate data import, export, and migration because every system
stores dates and times differently. However, these data types store dates and times much more
efficiently than string data types, and the layers of interface software between the database and
an application do a pretty good job of converting the data to the necessary form.

The special data type bit (a Boolean value) is modestly useful under the right circumstances. If a
table must contain multiple binary condition attributes, the values can be stored efficiently using
bit fields. However, if there is only one binary condition attribute, the value can be stored just as
efficiently using the char data type or the tinyint data type. These alternatives to the bit data type
are more flexible and the char data type is best for migration purposes.

The SQL Server image data type is another case (like the text data type) where it may be better to
store objects outside of the database and store only references to the objects in the database. The
hassles involved with getting images into the database and retrieving them from the database are
rarely offset by the convenience of having them embedded in the database. Further, when large
objects are stored in the database they are included in every database backup. If they are stored
outside of the database they can be handled more selectively by backup software.

Database Architecture Wingenious

Database Architecture 7

Null Values:
One of the more confusing aspects of programming a database-driven application is the handling
of null values. Each development environment (back-end or front-end) seems to have a different
definition of a null value and a different way to represent one. In SQL Server, fields of any data
type can contain null values. However, the corresponding native data types for many front-end
environments do not allow null values. T-SQL itself has two different ways of comparing null
values. The method is determined by a connection setting. It’s best to use T-SQL syntax that
works regardless of the setting (IS NULL, IS NOT NULL, the ISNULL function). The issues
with handling null values can be minimized by allowing them in the database only when it’s
absolutely necessary. Fields that are populated by triggers alone must allow null values and
optional foreign key fields must allow null values.

Naming Conventions:
There are many kinds of objects included in the database architecture. Each object has a name.
In order to preserve the sanity of DBAs and developers, a naming convention for every object
should be established and strictly followed. Naming conventions allow both groups to easily
locate objects and immediately understand the nature of objects from the names. Generally,
naming conventions involve prefixes and/or suffixes attached to base names.

This database architecture suggests using base names that include one or more meaningful
words, with the initial letter of each word capitalized. The base names must be unique within
each object type, but they should not be overly long (preferably less than 50 characters). A
three-character prefix appears in front of every base name. The prefix uses lower-case letters
and it indicates the type of the object. Except for certain field names (discussed below), no
object names include a suffix.

Object Type Object Prefix

Table tbl
Stored Procedure usp
User-Defined Function udf
Trigger trg
View qry
Index idx
Key Constraint key
Key Constraint keyPK – Primary Key
Key Constraint keyFK – Foreign Key

Database Architecture Wingenious

Database Architecture 8

This database architecture encourages the use of an additional two-character prefix for certain
types of objects. The two characters are in upper-case letters, and they follow the lower-case
prefix. The additional prefix can be used to group objects according to business needs. For
example, stored procedures may use additional prefixes such as GP (General Purpose), GR
(Generated Routine), HR (Human Resources), CS (Customer Service), IT (Information
Technology) or anything that helps to identify a logical grouping of these objects.

The use of prefixes on database object names is hotly debated whenever the topic comes up for
discussion. Some DBAs argue with an almost religious fervor instead of simply using common
sense (this happens with several other database architecture topics as well). Most of the strong
objections to using prefixes come from mere personal opinion instead of being based on sound
logic. When using prefixes, the additional length of the names has a negligible effect and there
are no other technical reasons to avoid the practice. However, there is a sound technical reason
to use prefixes on all database object names.

SQL Server maintains records in the sysobjects system table for most kinds of objects. Those
records contain names that must be unique. Many objects are directly related to a single table
and it only makes sense to name such objects according to the corresponding table name. What
other naming scheme could provide the same degree of consistency and predictability? If there
were no prefixes to specify the object types then the names would not be unique. Consider an
INSERT trigger and a stored procedure to INSERT a record. Both objects pertain to one table
only, and both of them deal with the INSERT action. The base name for each object should be
the name of the table to which it applies. A prefix on the name of each object would make the
name unique. The object name alone would indicate the type of object and the corresponding
table. That can be very handy when working with objects by name in T-SQL.

Choosing base names for tables involves an additional consideration. Should the base names be
singular or plural? Try to recognize any discernable logic or reason when making such database
architecture decisions. In this case, notice that the English language uses several different ways
to determine the plural forms of words. Sometimes the plural form depends on how the singular
form is spelled. Sometimes the plural form depends on the word itself. Sometimes there is more
than one acceptable plural form of a word. Sometimes the plural form is identical to the singular
form. Even if this variability were the only reason for avoiding plurals it’s better than having no
sound logic or practical reason behind using them. This database architecture suggests using the
singular forms of words for table names.

The preceding paragraphs share a common theme. The theme is consistency and predictability.
That’s the most important point this document hopes to convey. Above all, any good database
architecture should strive for consistency so that everything is predictable. Do not change the
naming convention from object to object. Do not change the design rules from table to table.
Make sound decisions on such matters and apply the decisions across the entire database. If
object names are consistent then DBAs and developers do not have to guess. If the design of
every table is predictable then dynamic routines can be written to perform extremely powerful
manipulations of tables and their data. Such routines can be very valuable to DBAs.

Database Architecture Wingenious

Database Architecture 9

Fields are conspicuously absent from the list of object types above. This database architecture
suggests using a field name prefix that is based on the data type of the field.

Data Type Field Prefix

Bit bln
TinyInt byt
SmallInt int
Int lng
Char/NChar str
VarChar/NVarChar str
Text/NText str
Decimal/Numeric dec
Float/Real dec
Money/SmallMoney dec
DateTime/SmallDateTime dtm
Other bin

These field name prefixes were specifically chosen to be compatible with commonly used
BASIC (such as Visual Basic) variable name prefixes. The goal is to provide an application
developer with information to choose an appropriate data type for variables. The prefixes can
help developers while not compromising database integrity or performance. They do not affect
DBA work and they have no negative impact, but they are not universally accepted.

The use of field name prefixes is an even more contentious issue than using prefixes on other
database object names. There is some reason to avoid the practice because the data type for a
field could change such that it requires a change in the field name. A change in the field name
would require a change to any code that references the field. However, if an appropriate amount
of requirements discovery is done prior to data modeling and database design, such changes are
very rare. Further, it’s very likely that such a change in data type would require a change to the
code anyway. Most code is written to declare/define/dimension variables as a particular data
type. If a field were to change from a 2-byte integer to a 4-byte integer, without a change in the
field name that would force a developer to review the code, it could result in erratic behavior of
the code. Such a problem may be very difficult to track down.

The use of field name prefixes can be very helpful in understanding and changing code that
references the fields. However, if prefixes are used incorrectly they can be very misleading.
Therefore, use them consistently or do not use them at all.

Database Architecture Wingenious

Database Architecture 10

Normalization:
Database normalization is a complex topic that deserves much more explanation than what is
contained in this document. There are many books that cover the concepts very well. Basically,
it boils down to grouping fields appropriately into tables and forming parent/child relationships
between the tables. Among the many goals of proper normalization is ensuring data integrity
and avoiding data redundancy. The lack of coverage in this document does not mean that the
topic is less important. Database normalization is a critical part of good database design.

Relationships:
Database relationships create a hierarchy for the tables. A properly normalized database has a
well-organized hierarchy. For each relationship between two tables, one table is the parent and
one table is the child. For example, a Customer table may be the parent of an Order table, and in
turn, an Order table may be the parent of an OrderDetail table. In this example, the Order table
is both a child (of Customer) and a parent (to OrderDetail).

Database relationships are embodied through primary keys in parent tables and foreign keys in
child tables. There are many ways this can be implemented and the various options are another
source of heated discussion. There is no universally accepted approach, but there is an approach
that appears to be the most common. This document describes that approach and provides sound
justification for it with technical reasoning. The justification is based on practical considerations
rather than blind adherence to theory.

One of the most important keys (pun intended) to this database architecture is the handling of
primary keys and foreign keys.

Database Architecture Wingenious

Database Architecture 11

Primary Keys:
A primary key is a field in a table whose value uniquely identifies each record. There are many
qualities required of a field in this position of honor. It must not contain any duplicate values
and the values must not change. It should also be compact for the best performance. It’s often
very difficult to find such characteristics in naturally occurring data. Therefore, this database
architecture uses surrogate primary keys.

A surrogate primary key field contains artificially derived values that have no intrinsic meaning.
The sole purpose for the values is to uniquely identify each record. The values are derived in a
way that prevents duplication, they are never changed, and they are compact (usually integers).
The use of surrogate primary keys avoids the inevitable hassles of trying to use natural data for
primary keys. It’s also a very important factor in the advantages of this database architecture.

SQL Server provides a convenient field property that supports the use of surrogate primary keys.
One field in a table can be assigned the IDENTITY property. When a record is inserted into the
table that field is automatically given a value one greater than the previously inserted record. A
field with the IDENTITY property does not (normally) allow values to be explicitly provided
with an insert or changed with an update.

In this database architecture, the primary key field is the first field in every table. The field is a
4-byte integer (SQL Server data type int). The field uses the IDENTITY property (starting at 1
and incrementing by 1). The field is named with a prefix (lng), the table name (without a prefix),
and a suffix (ID). The primary key field for a Customer table would be named lngCustomerID.

Foreign Keys:
A foreign key is a field in a table that refers to parent records in another table. The references
are represented by the primary key values of the corresponding parent records. A foreign key
field is the same data type as the primary key field of the referenced table. Usually, a foreign
key field is named the same as the primary key field of the parent table. This very beneficial
convention is called key migration in data modeling terminology.

Child table foreign key references to parent table primary keys embody database relationships.

Database Architecture Wingenious

Database Architecture 12

Relationships (Again):
Some DBAs vehemently argue that primary keys should be composed of natural data. They do
not like surrogate primary keys. This opinion seems to be based on a desire to worship theory
rather than a rational examination of the issues involved. Natural data is almost never compact
and almost never stable (not subject to change). A single field of natural data is often not even
unique. The uniqueness requirement is sometimes met by using multiple fields as a composite
primary key. However, that worsens the compactness.

The use of natural data for a primary key also has major implications for child tables. In order to
ensure uniqueness in their primary keys, all child tables are forced to include the primary key of
their parent table along with an additional field (or more) of their own. This approach becomes
extremely unwieldy very quickly in a relational database of any depth.

Imagine a database that contains a Customer table, an Order table, an OrderDetail table, and a
Product table. All of these tables use natural data primary keys. The Customer table uses three
fields (zip code, last name, date/time the account was created) as a composite primary key to try
to ensure uniqueness. The Order table uses a Customer foreign key plus date/time the order was
placed as a primary key. The OrderDetail table uses an Order foreign key plus a Product foreign
key (name) as a primary key. The OrderDetail table has five long fields as a composite primary
key, and this database is only three levels deep! Now imagine the query joining these tables in
order to produce a packing list. Then picture a database that has a much deeper hierarchy. It
should be clear that natural data primary keys are a troublesome database design decision.

Some of those who recommend natural data primary keys make one valid point. Such keys do
reliably prevent duplicate data. Surrogate primary keys by themselves do not prevent duplicate
data. However, that goal is easily accomplished by adding a unique constraint on the necessary
field or fields. For example, adding a unique constraint on zip code, last name, and date/time of
the Customer table above would do the same thing while preserving other advantages.

Surrogate primary keys are compact (resulting in efficient indexes), stable (they never change),
and consistent. The consistency is a very important point. The database above has a different
number of fields in the primary key of every table. The fields are also different data types. A
developer would have a difficult time remembering all the details, and leaving a field out of a
JOIN could have disastrous consequences. With surrogate primary keys as suggested by this
database architecture every JOIN would be simple, obvious, and predictable.

The consistency provided by surrogate primary keys makes it possible to write some extremely
powerful dynamic routines for database administration (see General Purpose Routines for some
examples). Such routines can be a tremendous time-saver for DBAs. Instead of writing special
code for every table generic code can be used with any or all tables.

Database Architecture Wingenious

Database Architecture 13

The rules for the foundation of this database architecture are quite simple. Here they are in a
loose order of importance (with 1 being the most important)…

 1) Every table has a primary key.
 2) The primary key is a single field.

 3) The primary key is the first field.
 4) The primary key field is named to correspond with the table name.

 5) The primary key migrates to child tables as a foreign key with the same characteristics.
 6) The primary key field is numeric.

 7) The primary key field is a 4-byte integer data type.
 8) The primary key field uses the IDENTITY property (starting at 1 and incrementing by 1).

The table definitions below are intended to serve as examples of the rules listed above. They are
not intended to be a realistic model for any particular business.

Database Architecture Wingenious

Database Architecture 14

CREATE TABLE dbo.Region
 (RegionID int IDENTITY(1,1) PRIMARY KEY,
 RegionCode char(2) NOT NULL,
 RegionName varchar(40) NOT NULL,
 Representative varchar(40) NOT NULL)

CREATE TABLE dbo.Customer
 (CustomerID int IDENTITY(1,1) PRIMARY KEY,
 RegionID int NOT NULL,
 Name varchar(80) NOT NULL,
 Address varchar(80) NOT NULL,
 Phone varchar(20) NOT NULL)

CREATE TABLE dbo.Vendor
 (VendorID int IDENTITY(1,1) PRIMARY KEY,
 Name varchar(80) NOT NULL,
 Address varchar(80) NOT NULL,
 Phone varchar(20) NOT NULL)

CREATE TABLE dbo.Product
 (ProductID int IDENTITY(1,1) PRIMARY KEY,
 VendorID int NOT NULL,
 Description varchar(80) NOT NULL,
 WholesaleCost decimal(7,2) NOT NULL,
 RetailPrice decimal(7,2) NOT NULL)

CREATE TABLE dbo.Purchase
 (PurchaseID int IDENTITY(1,1) PRIMARY KEY,
 CustomerID int NOT NULL,
 OrderNumber int NOT NULL,
 OrderDate smalldatetime NOT NULL)

CREATE TABLE dbo.PurchaseItem
 (PurchaseItemID int IDENTITY(1,1) PRIMARY KEY,
 PurchaseID int NOT NULL,
 ProductID int NOT NULL,
 Quantity smallint NOT NULL,
 LineNumber smallint NOT NULL)

CREATE TABLE dbo.Shipment
 (ShipmentID int IDENTITY(1,1) PRIMARY KEY,
 Carrier varchar(20) NOT NULL,
 TrackingNumber varchar(20) NOT NULL,
 ShipDate smalldatetime NOT NULL)

CREATE TABLE dbo.PurchaseItemShipment
 (PurchaseItemShipmentID int IDENTITY(1,1) PRIMARY KEY,
 PurchaseItemID int NOT NULL,
 ShipmentID int NOT NULL)

CREATE TABLE dbo.Payment
 (PaymentID int IDENTITY(1,1) PRIMARY KEY,
 PurchaseID int NOT NULL,
 Method varchar(20) NOT NULL,
 Amount decimal(7,2) NOT NULL)

Database Architecture Wingenious

Database Architecture 15

Self-Referencing Tables:
A self-referencing table is a table that has a foreign key reference pointing to itself. The typical
example is an Employee table where each record references another record in the same table as a
supervisor. SQL Server does not prevent such a structure, but this database architecture strongly
recommends against it. It causes problems when using generic routines to examine the database
hierarchy. If a routine attempts to follow every reference then a self-referencing table causes an
endless loop (circular reference). If a routine specifically ignores self-references then it fails to
perform a complete analysis of table relationships. Both situations are very unacceptable and
this database architecture strongly suggests that self-references never be used. They can be
avoided with a fairly simple modification to the data model. The data model can use a set of
three tables in place of a single Employee table that includes a self-reference. The three tables
would be named Employee, Supervisor, and Position.

The Employee table would have all the usual fields, much like the original table. It would
contain one record for each employee.

The Supervisor table would be a child of the Employee table. It would contain one record for
each employee with supervisory responsibility.

The Position table would be a child of the Employee table and the Supervisor table. It would
contain at least one record for each employee, except the company president (who is the only
employee without a supervisor). Each job position is filled by an employee who reports to a
supervisor. One employee could fill several positions and could potentially report to several
different supervisors through the positions.

This structure avoids the problems of a single self-referencing table, while it also provides much
more flexibility. It allows for attributes that are unique to a supervisor, such as the effective date
of the supervisory role or HR contact person information. It allows for attributes that are unique
to a job position, such as the percentage of FTE necessary for the position or the location where
work is performed. Open positions could be represented through an optional employee foreign
key or by pointing the employee foreign key to a specially designated record.

A similar set of three tables could be used to model other relationships. Consider a machine
parts business that sells individual items and sells assemblies of several items. The Employee
table could become a Part table with many attributes. The Supervisor table could become an
Assembly table with attributes such as who assembles the part or how much time it takes to
assemble. The Position table could become a Component table with attributes such as the
sequence of assembly or the quantity required by the assembly.

Database Architecture Wingenious

Database Architecture 16

Indexes:
Indexes in a database are much like indexes in a book. They are used to quickly locate specific
content. The proper use of indexes is probably the single most important factor in achieving the
maximum level of performance from queries. Alas, there is no magic formula for doing proper
indexing. It’s heavily dependent on the data itself and how the data is being used.

This database architecture suggests a starting point for indexing where an index is created for
every foreign key in every table. Such indexes will improve the performance of queries that
select based on foreign keys. It also improves the performance of queries that include joins
between tables, and a properly normalized database means lots of joins.

Once indexes have been created for all foreign keys, further indexing requires an understanding
of the data itself and how the data is being used. Indexes are best applied to fields that are small,
highly selective (many unique values), and often used in queries. In SQL Server, indexes can be
clustered or not clustered. Only one index per table can be clustered, and that should be reserved
for data that is frequently used in queries for aggregation (GROUP BY), sorting (ORDER BY),
or filtering (WHERE). Indexes can also be applied to combinations of fields, in which case the
most frequently referenced field(s) should be listed first. A query that references only the fields
included in an index is especially efficient.

Be careful to avoid creating too many indexes. Indexes must be maintained by the system and
that involves processing overhead during inserts and updates.

When experimenting with different indexes it’s very important to carefully test the performance
of existing queries. Do not be misled by the effects of data caching at the server.

Concurrency:
Any multi-user database application has to have some method of dealing with concurrent access
to data. Concurrent access means that more than one user is accessing the same data at the same
time. A problem occurs when user X reads a record for editing, user Y reads the same record for
editing, user Y saves changes, then user X saves changes. The changes made by user Y are lost
unless something prevents user X from blindly overwriting the record. This problem may not be
handled by the database alone. The solution usually involves the application as well.

One way of dealing with concurrent access is to use a counter field that is incremented with each
modification to the record. In the example above, user X would be alerted by the application that
the record had been modified between the time of reading and the time of attempting to save
changes. This situation is noticed by the database and/or by the application because the counter
had changed. The application should allow user X to start over with the current record contents,
or overwrite the changes made by user Y. No changes would be unknowingly lost.

Database Architecture Wingenious

Database Architecture 17

Audit Trails:
Some businesses require that a certain amount of database change history be retained. Usually,
such a requirement does not involve every table in the database. Maybe only selected tables
need to have an audit trail (a list of changes for each record). It’s quite common to use triggers
to implement a solution for this need. A trigger on each table senses when changes are being
made and saves a copy of the changes in a corresponding change history table. This database
architecture suggests a slightly different approach.

A trigger works very well to sense when changes are being made to a record, but it seems
redundant to save every change as it’s being made (including inserts, updates, and deletes).
Instead, save the previous record contents when a record is changed or deleted. This method
requires less space because the current record contents are in only one place, the original table.
The change history table (audit trail) contains only previous versions of each record, as well as
the last version if the record has been deleted. A complete history for any particular record is
available by listing the appropriate records from both tables.

Database Architecture Wingenious

Database Architecture 18

Standard Fields:
This database architecture suggests up to six fields that could be included in every table. It’s not
likely that all six are needed for every database, but some are fairly universal. It would be best to
use the same set of standard fields in every table. That’s not a requirement, but consistency is a
very desirable thing. Such consistency keeps open the options for dynamic routines that work
for any table(s) in the database.

CreateUser or strCreateUser or lngCreateUser

This field would be used to identify the user that created the record. The field may contain a user
name, or it may contain a foreign key if the application has internal security.

CreateDate or dtmCreateDate

This field would be used to store the date and time when the record was created.

ModifyUser or strModifyUser or lngModifyUser

This field would be used to identify the user that last modified the record. The field may contain
a user name, or it may contain a foreign key if the application has internal security.

ModifyDate or dtmModifyDate

This field would be used to store the date and time when the record was last modified.

DetectWork or lngDetectWork

This field would be used to store a counter for detecting concurrent access to the record.

The database and application would need to work together to take advantage of this field…

The application reads a record for editing. It increments the counter field by one when saving
changes. The database (a stored procedure) checks the stored counter before updating. If the
stored counter is not less than the incremented counter, then a concurrency violation has taken
place. In other words, another user changed the record between reading and attempting to save
changes. The database denies the requested update and informs the application that the update
was not performed. The application offers the user options for proceeding. If the user chooses
to overwrite the record, the application simply increments the counter by one and tries to save
again. As an alternative to incrementing the counter by one, the application could increment the
counter by a very large number (such as a million) to indicate that a concurrency violation has
taken place and to force the save to succeed. In this case, the counter would be used to track
concurrency violations as well as updates.

Database Architecture Wingenious

Database Architecture 19

RecordMask or bytRecordMask

This field would be used to store a status indicator for the record. In some situations, records in
selected tables may have several different states of existence. This field could be used to mark
records as active, inactive, pending, disabled, deleted, or any other state that business needs may
dictate. If records would be marked as either active or deleted only, it may be better to consider
record audit trail functionality (see above).

Standard Routines:
This database architecture suggests several standard routines for each table. Such routines can
be generated from the database schema rather than hand-coded. Generated routines should be
flexible for developers to use, but they must be carefully designed to minimize the occurrences
of table scans (a common reason for performance issues) and to maximize the benefit of cached
execution plans. Dynamic T-SQL is sometimes the best way to balance these needs.

Standard Triggers:
This database architecture suggests up to two standard triggers for each table. Each trigger
simply sets one standard date/time field (if used) to the current date and time. If the standard
stored procedures (see below) are used for all record inserts and updates, then these triggers are
not required. They are mainly useful for handling the date/time fields when record inserts and
updates are done by custom routines or by editing tools (such as Enterprise Manager).

trgGRCITableName

This trigger fires with an insert and sets the dtmCreateDate to the current date and time.

trgGRCUTableName

This trigger fires with an update and sets the dtmModifyDate to the current date and time.

Database Architecture Wingenious

Database Architecture 20

Standard Stored Procedures:
This database architecture suggests up to six standard stored procedures for each table. They
each perform one of the four basic SQL commands (INSERT, UPDATE, DELETE, SELECT).

uspGRCITableName

This routine performs an INSERT. It accepts values for each field (except for the primary key)
and it returns the system-generated primary key (IDENTITY value) as an OUTPUT parameter.

This routine can automatically assign values to the Create and Modify standard fields.

uspGRCUTableName

This routine performs an UPDATE of one record. It accepts a primary key value and values for
each of the other fields. If the DetectWork standard field is present, the new value is compared
with the existing value. The existing value must be less than the new value or the record is not
affected. The application can check the number of records affected and react accordingly.

This routine can automatically assign values to the Modify standard fields.

uspGRCDTableName

This routine performs a DELETE of one record.

This routine accepts (expects) a primary key value.

uspGRCSTableName

This routine performs a SELECT of one record. It returns all fields.

This routine accepts (expects) a primary key value.

Database Architecture Wingenious

Database Architecture 21

uspGRKDTableName

This routine performs a DELETE of one or more records.

This routine accepts an optional field name to determine which key field will be used to select
records. The default behavior is to use the primary key, but any foreign key can be used instead.
This routine accepts an optional key value. The default behavior is to use a key value of zero
(0), which matches all records. This routine also accepts an optional value for the RecordMask
standard field. The default behavior is use a value of zero (0), which matches all records. If the
RecordMask standard field is not present the value is simply ignored.

It’s probably better to generate a separate stored procedure for each foreign key.

uspGRKSTableName

This routine performs a SELECT of one or more records. It returns all fields.

This routine accepts an optional field name to determine which key field will be used to select
records. The default behavior is to use the primary key, but any foreign key can be used instead.
This routine accepts an optional key value. The default behavior is to use a key value of zero
(0), which matches all records. This routine also accepts an optional value for the RecordMask
standard field. The default behavior is use a value of zero (0), which matches all records. If the
RecordMask standard field is not present the value is simply ignored.

It’s probably better to generate a separate stored procedure for each foreign key.

Standard User-Defined Function:
This database architecture suggests one standard user-defined function for each table. The
function returns a set of records (all fields) with a single SELECT statement. Such a function
offers advantages over a view or stored procedure. It allows the use of parameters (a view does
not) and it can be referenced in a FROM clause (unlike a stored procedure).

udfGRKSTableName

This function performs a SELECT of one or more records. It returns all fields.

This function expects a field name to determine which key field will be used to select records.
The primary key or any foreign key can be used. This function expects a key value to be
supplied. The value zero (0) matches all records. This function also expects a value for the
RecordMask standard field as a way to filter or mask records based on their status. The value
zero (0) matches all records. If the RecordMask standard field is not present the value is simply
ignored. The parameter is included for all tables for consistency.

Database Architecture Wingenious

Database Architecture 22

Standard View:
This database architecture suggests one standard view for each table. The view returns all the
records in the table with a single SELECT statement. An ORDER BY clause is included to sort
the records by the primary key (or the first column of a clustered index).

qryGROSTableName

This view performs a SELECT of all records. It returns all fields.

This view orders the records by the primary key, or the first column of a clustered index if such
an index has been created.

The standard view is no longer suggested. It does not serve a useful purpose.

Generated Middle-Tier Code:
The structure of this database architecture allows standard database access code to be generated
by a routine, instead of having to enter it by endless typing.

The generated code could handle the CRUD (Create, Retrieve, Update, Delete) operations for
single records in many tables of most databases.

Here are two ideas for code that could be generated according to the database schema…

Generate a class module for each table. The class module could have methods for the CRUD
operations and properties for the fields.

Generate a web page or Windows form for each table. The page/form could provide the user
interface for the CRUD operations.

Database Architecture Wingenious

Database Architecture 23

Bulk Relational Data:
A relational database management system (RDBMS), such as SQL Server, is intended to handle
relational data. For the purpose of this discussion, relational data is defined as data with a strict
hierarchical organization or tree structure. The RDBMS ensures the integrity of relational data
by enforcing various constraints. The constraints…

* guarantee that primary key values are unique

* prevent child records from being inserted if they reference parent records that do not exist

* prevent parent records from being deleted if there are child records referring to them

Bulk relational data often consists of a set of related records that come from a group of related
tables. The tables represent a logical subset of the complete data model and they form a branch
of the database tree (hierarchy). A common example might include one record from a Customer
table, all the child records of the customer from an Order table, and all the child records of those
orders from an OrderDetail table. It may be necessary to manipulate a set of records like this as
a unit. SQL Server 2000 offers a cascading delete feature for removing a set of related records
as a unit, but copying the records is a much more involved operation.

The order in which tables are processed when handling bulk relational data is critical. Deleting
such data is not difficult, so this section focuses on the insertion of such data.

The handling of bulk relational data is one situation (perhaps the only situation) where natural
data primary keys and foreign keys have an advantage. With natural data keys the only issue is
processing the tables in the correct order. The keys have meaning outside the database and they
are contained within the bulk data. New child records can be inserted as they are, without any
need to modify foreign keys to match the primary keys in corresponding new parent records.

The handling of bulk relational data in this database architecture can be quite involved. With
surrogate keys, foreign keys in new child records must be adjusted to reference the generated
primary keys in corresponding new parent records. Making the adjustments before insertion
usually requires row-by-row processing using complex code. Making the adjustments after
insertion requires disabling foreign key constraints and executing some very intricate code.

The well-known SQL Server utility products provide no assistance with the handling of bulk
relational data containing surrogate keys. The tools that generate INSERT statement scripts do
nothing to modify foreign keys in new child records. However, the consistency of this database
architecture makes it feasible to write generic routines that handle bulk relational data as a unit.
A unit could be copied to a demonstration database or a development database. A unit could be
copied to an archive database and removed from a production database. A unit could be copied
within a production database to avoid manual data entry.

Database Architecture Wingenious

Database Architecture 24

General-Purpose Routines:
One of the great benefits of using this database architecture is that it’s compatible with creating
many powerful generic routines to handle common DBA chores.

Here are some very handy things that T-SQL utility routines could do to implement and support
this database architecture (see example code below)…

Create a script for the database schema, adding selected standard fields, naming foreign keys
appropriately, and applying correct prefixes to field names.

Create a script for the standard triggers, stored procedures, user-defined function, and view.

Create (or delete) constraints that establish primary keys.

Create (or delete) foreign key constraints.

Create (or delete) foreign key indexes.

Find duplicate records in a table.

Given a record in a table, count the associated records in all child tables.

Compare records in a table with records in a corresponding table in another database.

INSERT/UPDATE/DELETE records in a table in order to make it match a corresponding table
in another database.

Delete a branch of a database, a branch being a set of records in a table and all the descendent
records in other tables.

Copy a branch of a database to another database (with the same schema), adjusting the foreign
keys in all the copied records.

Given a record in a table and a set of related tables, return a set of associated records from each
table. This returns much less data than the usual (denormalized) view.

Database Architecture Wingenious

Database Architecture 25

The following T-SQL code references system tables. The use of properly documented (BOL)
system table columns should be safe and reliable for most database administration purposes, but
it may be best to avoid the practice in production application code.

The code below creates primary keys and foreign keys for this database architecture. It’s a very
simple example of a general-purpose routine.
The first page (this page) is initialization.
The second page creates primary keys.
The third page creates foreign keys.

DECLARE @Return int
DECLARE @Retain int
DECLARE @Status int

SET @Status = 0

DECLARE @Prefix varchar(10)

DECLARE @Length tinyint
DECLARE @Locate tinyint

SET @Prefix = 'tbl' -- table name prefix

SET @Length = LEN(@Prefix)
SET @Locate = LEN(@Prefix) + 1

DECLARE @RunSQL varchar(2000)

DECLARE @Object varchar(100)
DECLARE @Column varchar(100)
DECLARE @Parent varchar(100)

DECLARE @Format varchar(100)

SET @Format = 'lng*ID'

Database Architecture Wingenious

Database Architecture 26

-- Create Primary Keys

 DECLARE Tables CURSOR FAST_FORWARD FOR
 SELECT O.name, C.name
 FROM sysobjects AS O
 JOIN syscolumns AS C
 ON O.id = C.id
 WHERE ISNULL(OBJECTPROPERTY(O.id,'IsMSShipped'),1) = 0
 AND RTRIM(O.type) = 'U'
 AND LEFT(O.name,@Length) = @Prefix
 AND O.name NOT LIKE '%dtproper%'
 AND O.name NOT LIKE 'dt[_]%'
 AND C.colid = 1
ORDER BY O.name

OPEN Tables

SET @Retain = @@ERROR IF @Status = 0 SET @Status = @Retain

FETCH NEXT FROM Tables INTO @Object, @Column

SET @Retain = @@ERROR IF @Status = 0 SET @Status = @Retain

WHILE @@FETCH_STATUS = 0 AND @Status = 0

 BEGIN

 SET @RunSQL = ' ALTER TABLE ' + @Object
 + ' ADD CONSTRAINT ' + 'keyPK'
 + SUBSTRING(@Object,@Locate,100)
 + ' PRIMARY KEY NONCLUSTERED'
 + ' (' + @Column + ')'

 IF @Status = 0 EXECUTE (@RunSQL) SET @Return = @@ERROR

 IF @Status = 0 SET @Status = @Return

 FETCH NEXT FROM Tables INTO @Object, @Column

 SET @Retain = @@ERROR IF @Status = 0 SET @Status = @Retain

 END

CLOSE Tables DEALLOCATE Tables

Database Architecture Wingenious

Database Architecture 27

-- Create Foreign Keys

 DECLARE Tables CURSOR FAST_FORWARD FOR
 SELECT O.name, C.name, T.name
 FROM sysobjects AS O
 JOIN syscolumns AS C
 ON O.id = C.id
 JOIN sysobjects AS T
 ON C.name = REPLACE(@Format,'*',SUBSTRING(T.name,@Locate,100))
 AND C.colid > 1
 WHERE ISNULL(OBJECTPROPERTY(O.id,'IsMSShipped'),1) = 0
 AND RTRIM(O.type) = 'U'
 AND LEFT(O.name,@Length) = @Prefix
 AND O.name NOT LIKE '%dtproper%'
 AND O.name NOT LIKE 'dt[_]%'
 AND ISNULL(OBJECTPROPERTY(T.id,'IsMSShipped'),1) = 0
 AND RTRIM(T.type) = 'U'
 AND LEFT(T.name,@Length) = @Prefix
 AND T.name NOT LIKE '%dtproper%'
 AND T.name NOT LIKE 'dt[_]%'
ORDER BY O.name

OPEN Tables

SET @Retain = @@ERROR IF @Status = 0 SET @Status = @Retain

FETCH NEXT FROM Tables INTO @Object, @Column, @Parent

SET @Retain = @@ERROR IF @Status = 0 SET @Status = @Retain

WHILE @@FETCH_STATUS = 0 AND @Status = 0

 BEGIN

 SET @RunSQL = ' ALTER TABLE ' + @Object
 + ' ADD CONSTRAINT ' + 'keyFK'
 + SUBSTRING(@Object,@Locate,100)
 + SUBSTRING(@Parent,@Locate,100)
 + ' FOREIGN KEY'
 + ' (' + @Column + ')'
 + ' REFERENCES ' + @Parent
 + ' (' + @Column + ')'

 IF @Status = 0 EXECUTE (@RunSQL) SET @Return = @@ERROR

 IF @Status = 0 SET @Status = @Return

 FETCH NEXT FROM Tables INTO @Object, @Column, @Parent

 SET @Retain = @@ERROR IF @Status = 0 SET @Status = @Retain

 END

CLOSE Tables DEALLOCATE Tables

Database Architecture Wingenious

Database Architecture 28

T-SQL Coding Standards:
Coding standards are often overlooked when it comes to T-SQL programming. However, they
are very important to a smoothly operating development team. The coding standards presented
here are not universally accepted, there is no such thing. Some of these suggestions are rather
subjective and other SQL Server shops may have different ideas that are equally as effective.
The most important thing is establishing reasonable coding standards and adhering to them.

The remainder of this section contains miscellaneous coding standards, hints, and tips for T-SQL
programming. The comments are not necessarily in a suggested order of priority or importance.
This section is not intended to be a resource for learning basic T-SQL syntax. BOL should be
considered a valuable reference for finding and studying T-SQL syntax examples.

On the surface, the formatting of T-SQL code may not seem very important. However, uniform
formatting of T-SQL code is extremely helpful in understanding each other's work. Statements
follow a certain structure, and having that structure be visually evident makes it much easier to
verify that various parts of the statements (tables, fields, joins, conditions) are correct. Uniform
formatting also makes it much easier to add/remove sections to/from complex T-SQL statements
for debugging purposes. Here’s a formatting example for a SELECT statement…

 SELECT C.Name
 , E.NameLast
 , E.NameFirst
 , E.Number
 , ISNULL(I.Description,'NA') AS Description
 FROM tblCompany AS C
 JOIN tblEmployee AS E
 ON C.CompanyID
 = E.CompanyID
 LEFT JOIN tblCoverage AS V
 ON E.EmployeeID
 = V.EmployeeID
 LEFT JOIN tblInsurance AS I
 ON V.InsuranceID
 = I.InsuranceID
 WHERE C.Name LIKE @Name
 AND V.CreateDate > CONVERT(smalldatetime,'01/01/2000')
 ORDER BY C.Name
 , E.NameLast
 , E.NameFirst
 , E.Number
 , ISNULL(I.Description,'NA')

Database Architecture Wingenious

Database Architecture 29

Use four-space indentation for statements within a nested block of code (a multi-line SELECT
statement like the example above is still a single SQL statement). Right-align SQL keywords
when starting a new line within the same statement. Configure the code editor to use spaces
instead of tabs. This makes the formatting appear consistent regardless of what application
anybody else uses to view the code (with a fixed-width font).

Capitalize all T-SQL keywords, including T-SQL functions. Use mixed-case for variable names
and cursor names. Use lower-case for data types (as in DECLARE or CREATE).

Keep table name aliases short, but as meaningful as possible. In general, use the capital letters of
a table name as an alias. Use the AS keyword to specify aliases for tables or fields.

Always qualify field names with table name aliases when there are multiple tables involved in a
T-SQL statement. This adds clarity for others and avoids ambiguous references.

Align related numbers into columns when they appear in contiguous lines of code (such as with a
series of SUBSTRING function calls). This makes the list of numbers easier to scan.

Use single blank lines to separate logical pieces of T-SQL code, and do so liberally. Do not use
double blank lines. These things make the code easier to read for others.

As with any programming language, the use of local variables in T-SQL (such as @lngTableID)
is a major part of the coding. That by itself makes their proper use an important factor in writing
clean code that others can interpret as quickly as possible. Using variables properly also tends to
promote more robust coding with fewer bugs. Be sure to use appropriate data type declarations,
correct data type assignments, and consistent capitalization.

Always specify the length of a character data type. Be sure to allow for the maximum number of
characters. Characters beyond the maximum length are simply lost.

Always specify the precision and scale of the decimal data type. The default precision is 18 and
the default scale is 0 (resulting in an integer).

The error-checking examples in BOL do not work as written! The T-SQL statement (IF) used to
check the @@ERROR system function actually clears the @@ERROR value in the process. It
would never capture a value other than zero. Even if the examples worked, they would capture
the last error that occurred. It would often be more helpful to capture the first error. The error
code must be captured immediately using SET or SELECT (see the assorted examples above).
The error code should then be transferred to a status variable if the status variable is still zero
(which indicates no error has occurred). This method reliably captures the first error.

Database Architecture Wingenious

Database Architecture 30

Be careful with mathematical formulas. T-SQL may force an expression into an unintended data
type. Add point zero (.0) to integer constants if a decimal result is desired.

Do not use the STR function to perform any rounding, use it with integer values only. Use the
CONVERT function (going to a different scale) or the ROUND function before converting to a
string if the string form of a decimal value is needed.

Do not rely upon any implicit data type conversions. For example, do not assign a character
value to a numeric variable assuming that T-SQL will do the necessary conversion. Instead,
always use the appropriate CONVERT function to make the data types match before doing a
variable assignment or a value comparison.

Be aware that T-SQL appears to do an implicit and automatic RTRIM on character expressions
before doing a comparison. However, do not depend upon that behavior.

Do not directly compare a variable value to NULL with comparison operators (symbols). If the
variable value could be null, use IS NULL, IS NOT NULL, or the ISNULL function to perform
the comparison. These methods are not subject to SQL Server settings.

Do not use double quotes in T-SQL code for string constants or identifiers. The meaning of
double quotes is subject to SQL Server settings. Use single quotes for string constants. If it’s
necessary to delimit an object name, use brackets around the name.

Do not rely upon any undocumented fields in system tables or any undocumented functionality
of T-SQL statements. Things are undocumented if they are not described in BOL.

Never depend on a SELECT statement returning records in any particular order unless the order
is specified with an ORDER BY clause.

In general, use an ORDER BY clause with a SELECT statement, especially during development
or debugging. A known order, even if not the most convenient order, is better than no order for
visually scanning the data. In some situations the order of the resulting records does not really
matter. In those cases be sure to remove the ORDER BY clause before deploying the routine,
thereby avoiding the additional overhead of sorting the records.

The use of an asterisk in the select list (SELECT * FROM) should generally be avoided when
accessing typical tables. It would be unusual for all fields to be required for a given task, and
returning any extra fields adds overhead. It may be quite appropriate to use an asterisk when
accessing a temporary table, view, or table-valued user-defined function that was specifically
designed for a given task. In those cases, using an asterisk in the select list means fewer code
modifications if the task changes in the future.

Database Architecture Wingenious

Database Architecture 31

Be cautious with table-valued user-defined functions. Passing in a parameter with a variable
rather than a constant can result in table scans if the parameter is used in a WHERE clause.
However, be aware that table-valued user-defined functions have some dynamic compilation
features that make them very advantageous for optional parameters.

Avoid using the same table-valued user-defined function more than once in a single query,
particularly if passing the same parameters each time.

Always look for a set-based solution to a problem before implementing a temporary table
approach or a cursor-based approach. A set-based approach is often more efficient.

Consider using table variables in place of temporary tables with SQL Server 2000. They can
avoid some resource contention, but be aware that indexing is very limited. If a table variable
could contain a large set of data then experiment with a temporary table and indexing.

Create temporary tables early in the routine, and explicitly drop them at the end. Mixing DDL
statements with DML statements can contribute to excessive recompile activity.

Temporary tables are not inherently evil. Using them appropriately can make some routines
much more efficient. If a temporary table will be used only once after being populated, then
possibly a derived table would be a better choice. However, if appropriate indexing is done, a
temporary table may provide better performance than a derived table. If a certain set of data
(particularly data from large tables) will be referenced repeatedly within a routine, then it’s
usually beneficial to stash the data in a temporary table. Experiment with some different
approaches to see which one offers the best performance for a given task.

Cursors are not inherently evil. A FAST_FORWARD cursor over a small set of data will often
outperform other methods of handling row-by-row processing. This is especially true if several
tables must be referenced to get the necessary data. A routine that includes “running totals” in a
result set often executes fastest when implemented using a cursor. If development time allows it,
try both a cursor-based approach and a set-based approach to see which one performs best.

Dynamic SQL is not inherently evil. It should not be used as a substitute for well-written stored
procedures in a production environment, but it can be extremely handy if it’s used sparingly and
appropriately. Some T-SQL statements and functions do not allow variables for their arguments.
Dynamic SQL provides a way to execute such code using the desired parameters. For example,
a BULK INSERT statement that imports a text file from a variable UNC path into a temporary
table can be handled this way. Dynamic SQL can have some security ramifications because it
requires that users have permission to directly access any permanent tables that are referenced.
Dynamic SQL is especially useful for administrative tasks. It can be used to create some very
powerful routines for database administration if the architecture is sufficiently consistent.

Database Architecture Wingenious

Database Architecture 32

A table of sequence numbers, 1 through N, can be very handy for many purposes (see T-SQL
Code Examples for a way to create such a table).

Understand how a CROSS JOIN works and take advantage of it. Frequently, a CROSS JOIN is
used between a table of working data and a table of sequence numbers. The result set contains a
row for every combination of working data and sequence number.

Avoid doing a JOIN between a local table and a remote table on a linked server. Such a query
often provides very poor performance unless the remote table is small. Consider the available
alternatives that transmit a filtered result set from the remote server to the local server. Some
possible options are remote views, remote stored procedures, or the OPENQUERY function.
The objective is to try to minimize the amount of data being transmitted between servers by
performing as much of the query as possible on the remote server if that server contains the
largest tables involved in the query.

Almost every stored procedure should have SET NOCOUNT ON near the beginning. It’s good
form to have SET NOCOUNT OFF near the end. This standard also applies to triggers.

An explicit transaction is suggested any time more than one database modification statement is
used in a routine. This includes a single statement executed multiple times in a loop.

If several stored procedures are used to modify a common group of tables be sure to process the
tables in the same order within each stored procedure. Also, keep the scope of each transaction
as narrow as possible by doing any preliminary work (such as loading temporary tables) before
starting the transaction. These things reduce the opportunity for a deadlock situation.

This section mentions some syntax that is specific to T-SQL. If code portability is a concern it
may be advisable to use standard SQL syntax. As examples, the CAST function could be used
instead of the CONVERT function for most data type conversions and the COALESCE function
could be used instead of the ISNULL function.

The comments in this document that pertain to BOL were originally written when the current
version of BOL was the version that came with the initial release of SQL Server 2000. More
recent versions of BOL have been updated in many places. It’s possible that comments in this
document could become outdated as BOL changes.

Database Architecture Wingenious

Database Architecture 33

T-SQL Code Examples:
Here are some simple T-SQL code examples in the form of user-defined functions. The code
addresses several of the most common requests in SQL Server forums.

-- GPFillZeros converts an integer value to a zero-filled string of a given length

CREATE FUNCTION dbo.udfGPFillZeros
 (@N int,
 @I tinyint)
RETURNS varchar(10)
AS
BEGIN

DECLARE @Result varchar(10)

SET @Result = RIGHT(CONVERT(varchar(12),@N+10000000000),@I)

RETURN (@Result)
END

-- GPFixNumber converts a decimal value to a space-filled string of a given format

CREATE FUNCTION dbo.udfGPFixNumber
 (@N decimal(19,6),
 @I tinyint,
 @D tinyint)
RETURNS varchar(20)
AS
BEGIN

DECLARE @Result varchar(20)

SET @Result = LEFT(RIGHT(SPACE(12)+CONVERT(varchar(20),ROUND(@N,@D)),@I+7),@I+@D+1)

RETURN (@Result)
END

-- GPGetSeries returns a table of integer sequence numbers of a given range

CREATE FUNCTION dbo.udfGPGetSeries
 (@A int,
 @Z int)
RETURNS @T TABLE (Number int)
AS
BEGIN

DECLARE @I int

SET @I = 1

INSERT @T VALUES (@A)

WHILE @I < @Z - @A + 1

 BEGIN

 INSERT @T
 SELECT @I + Number
 FROM @T
 WHERE @I + Number <= @Z

 SET @I = @I + @@ROWCOUNT

 END

RETURN
END

Database Architecture Wingenious

Database Architecture 34

-- GPParseText returns a table of strings by parsing a given string using a given delimiter

CREATE FUNCTION dbo.udfGPParseText
 (@S varchar(7998),
 @E char(1))
RETURNS @T TABLE (Number smallint IDENTITY(1,1), Offset smallint, String varchar(2000))
AS
BEGIN

DECLARE @N smallint

DECLARE @Z varchar(8000)

SET @N = LEN(@S) + 1

SET @Z = @E + @S + @E

 INSERT @T (Offset, String)
 SELECT Number
 , SUBSTRING(@S,Number,CHARINDEX(@E,@Z,Number+1)-Number-1)
 FROM dbo.udfGPGetSeries(1,@N)
 WHERE SUBSTRING(@Z,Number,1) = @E
ORDER BY Number

RETURN
END

-- GPCountHits returns a count of how many times a search string is found in a given string

CREATE FUNCTION dbo.udfGPCountHits
 (@S varchar(8000),
 @E varchar(80))
RETURNS smallint
AS
BEGIN

DECLARE @Result smallint

DECLARE @N smallint

SET @N = DATALENGTH(@S)

SELECT @Result = COUNT(*)
 FROM udfGPGetSeries(1,@N) AS T
 WHERE SUBSTRING(@S,T.Number,@N) LIKE @E + '%'

RETURN (@Result)
END

Database Architecture Wingenious

Database Architecture 35

-- Examples

DECLARE @W int

SET @W = 123

SELECT dbo.udfGPFillZeros(@W,7)

-- Result = 0000123

DECLARE @M decimal(7,2)

SET @M = 8300

SELECT '$' + dbo.udfGPFixNumber(@M/800,5,2)

-- Result = $ 10.38

DECLARE @X smallint
DECLARE @Y smallint

SET @X = 3
SET @Y = 8

SELECT * FROM dbo.udfGPGetSeries(@X,@Y)

-- Result = six rows, one column each, values 3 4 5 6 7 8

DECLARE @S varchar(2000)

SET @S = '1,12,123,1234,ABCD,ABC,AB,A,*'

SELECT * FROM dbo.udfGPParseText(@S,',')

-- Result = nine rows, three columns each, number/offset/string

DECLARE @S varchar(2000)

SET @S = 'football basketball baseball hockey soccer volleyball golf tennis'

SELECT dbo.udfGPCountHits(@S,'ball')

-- Result = 4

DECLARE @S varchar(2000)

SET @S = 'This fine line is a baseline for the incline of the main line.'

SELECT dbo.udfGPCountHits(@S,'[]line[;,.!?]')

-- Result = 2

Database Architecture Wingenious

Database Architecture 36

The following T-SQL code references system tables. The use of properly documented (BOL)
system table columns should be safe and reliable for most database administration purposes, but
it may be best to avoid the practice in production application code.

The code below returns a table of objects in the database. The table has fields for object type,
parent object name (if applicable), object name, and object creation date (if available). The code
provides parameters to include or exclude certain object types from the list. The object types are
briefly defined within the code, but BOL includes a full description. The code can be used as a
starting point to build routines that provide much more detailed information.

DECLARE @Return int
DECLARE @Retain int
DECLARE @Status int

SET @Status = 0

DECLARE @Prefix varchar(10)

DECLARE @Length tinyint
DECLARE @Locate tinyint

SET @Prefix = 'tbl' -- table name prefix

SET @Length = LEN(@Prefix)
SET @Locate = LEN(@Prefix) + 1

DECLARE @icrdate datetime

DECLARE @itype char(2)

SET @itype = 'I'

DECLARE @Include varchar(100)
DECLARE @Exclude varchar(100)

-- V = View
-- P = Stored Procedure
-- FN = User-Defined Function, Scalar
-- IF = User-Defined Function, Table-Valued, Inline
-- TF = User-Defined Function, Table-Valued, Multi-Statement
-- TR = Trigger
-- U = Table
-- K = Key, Primary OR Constraint, Unique
-- F = Key, Foreign
-- C = Constraint, Check
-- D = Default
-- I = Index (fake type)

-- SET @Include = 'V|P|FN|IF|TF|TR'

-- SET @Include = 'U|K|F|C|D|' + RTRIM(@itype)

-- SET @Exclude = 'U|K|F|C|D|' + RTRIM(@itype)

Database Architecture Wingenious

Database Architecture 37

 SELECT O.type AS Type ,
 ISNULL(T.name,'') AS Parent,
 O.name AS Object,
 ISNULL(CONVERT(varchar(30),O.crdate,120),'') AS Creation
 FROM sysobjects AS O
LEFT JOIN sysobjects AS T
 ON O.parent_obj = T.id
 WHERE ISNULL(OBJECTPROPERTY(O.id,'IsMSShipped'),1) = 0
 AND O.name NOT LIKE '%dtproper%'
 AND O.name NOT LIKE 'dt[_]%'
 AND (@Include IS NULL
 OR CHARINDEX('|'+RTRIM(O.type)+'|','|'+(@Include)+'|') > 0)
 AND (@Exclude IS NULL
 OR CHARINDEX('|'+RTRIM(O.type)+'|','|'+(@Exclude)+'|') = 0)

 UNION ALL

 SELECT @itype AS Type ,
 ISNULL(O.name,'') AS Parent,
 I.name AS Object,
 ISNULL(CONVERT(varchar(30),@icrdate,120),'') AS Creation
 FROM sysobjects AS O
 JOIN sysindexes AS I
 ON O.id = I.id
 WHERE ISNULL(OBJECTPROPERTY(O.id,'IsMSShipped'),1) = 0
 AND RTRIM(O.type) = 'U'
 AND LEFT(O.name,@Length) = @Prefix
 AND O.name NOT LIKE '%dtproper%'
 AND O.name NOT LIKE 'dt[_]%'
 AND I.indid BETWEEN 1 AND 254
 AND LEFT(I.name,8) <> '_WA_Sys_'
 AND (@Include IS NULL
 OR CHARINDEX('|'+RTRIM(@itype)+'|','|'+(@Include)+'|') > 0)
 AND (@Exclude IS NULL
 OR CHARINDEX('|'+RTRIM(@itype)+'|','|'+(@Exclude)+'|') = 0)

 ORDER BY Type, Parent, Object

SET @Retain = @@ERROR IF @Status = 0 SET @Status = @Retain

Database Architecture Wingenious

Database Architecture 38

Conclusion:
As stated in the introduction, this database architecture may not be suitable exactly as-is for
every situation. It provides an excellent foundation for a tailored solution that meets specific
needs. It also points out several important considerations that need to be addressed as part of
such a solution. There are many technical issues to think about, and the design decisions made
early in the process can have a tremendous long-term impact.

The Appendix contains a database diagram and some example T-SQL script. They serve to
illustrate and demonstrate this database architecture. The script creates tables, primary keys,
foreign keys, indexes, and selected objects for a very simplistic insurance claims processing
company. All of the T-SQL script here was generated rather than typed.

A large package of T-SQL routines that implements and supports this database architecture is
available from the author. The diverse collection provides a wealth of functionality.

A family of utility applications for SQL Server is also available. The tools provide many very
powerful features for those who prefer the convenience of a graphical user interface.

For more information, please visit http://www.wingenious.com.

Wingenious
… ingenious utility software solutions for Windows 95/98/Me/NT/2000/XP, Office 97/2000, SQL Server 7/2000

http://www.wingenious.com.

Database Architecture Wingenious

Database Architecture 39

Appendix:

CREATE TABLE dbo.tblInsurance
 (lngInsuranceID int IDENTITY(1,1),
 strCreateUser varchar(40) NULL,
 dtmCreateDate smalldatetime NULL,
 strModifyUser varchar(40) NULL,
 dtmModifyDate smalldatetime NULL,
 lngDetectWork int NOT NULL,
 strDescription varchar(40) NOT NULL)

CREATE TABLE dbo.tblCompany
 (lngCompanyID int IDENTITY(1,1),
 strCreateUser varchar(40) NULL,
 dtmCreateDate smalldatetime NULL,
 strModifyUser varchar(40) NULL,
 dtmModifyDate smalldatetime NULL,
 lngDetectWork int NOT NULL,
 strName varchar(40) NOT NULL,
 strPhone varchar(14) NOT NULL)

Database Architecture Wingenious

Database Architecture 40

CREATE TABLE dbo.tblEmployee
 (lngEmployeeID int IDENTITY(1,1),
 strCreateUser varchar(40) NULL,
 dtmCreateDate smalldatetime NULL,
 strModifyUser varchar(40) NULL,
 dtmModifyDate smalldatetime NULL,
 lngDetectWork int NOT NULL,
 lngCompanyID int NOT NULL,
 strNameLast varchar(30) NOT NULL,
 strNameFirst varchar(24) NOT NULL,
 strNumber varchar(20) NOT NULL,
 strPhone varchar(14) NOT NULL)

CREATE TABLE dbo.tblCoverage
 (lngCoverageID int IDENTITY(1,1),
 strCreateUser varchar(40) NULL,
 dtmCreateDate smalldatetime NULL,
 strModifyUser varchar(40) NULL,
 dtmModifyDate smalldatetime NULL,
 lngDetectWork int NOT NULL,
 lngEmployeeID int NOT NULL,
 lngInsuranceID int NOT NULL)

CREATE TABLE dbo.tblClaim
 (lngClaimID int IDENTITY(1,1),
 strCreateUser varchar(40) NULL,
 dtmCreateDate smalldatetime NULL,
 strModifyUser varchar(40) NULL,
 dtmModifyDate smalldatetime NULL,
 lngDetectWork int NOT NULL,
 lngCoverageID int NOT NULL,
 strProvider varchar(40) NOT NULL,
 decAmountBilled decimal(9,2) NOT NULL,
 decAmountPaid decimal(9,2) NOT NULL,
 strComment varchar(2000) NOT NULL)

Database Architecture Wingenious

Database Architecture 41

ALTER TABLE tblInsurance
 ADD CONSTRAINT keyPKInsurance
 PRIMARY KEY NONCLUSTERED (lngInsuranceID)

ALTER TABLE tblCompany
 ADD CONSTRAINT keyPKCompany
 PRIMARY KEY NONCLUSTERED (lngCompanyID)

ALTER TABLE tblEmployee
 ADD CONSTRAINT keyPKEmployee
 PRIMARY KEY NONCLUSTERED (lngEmployeeID)

ALTER TABLE tblCoverage
 ADD CONSTRAINT keyPKCoverage
 PRIMARY KEY NONCLUSTERED (lngCoverageID)

ALTER TABLE tblClaim
 ADD CONSTRAINT keyPKClaim
 PRIMARY KEY NONCLUSTERED (lngClaimID)

ALTER TABLE tblEmployee
 ADD CONSTRAINT keyFKEmployeeCompany
 FOREIGN KEY (lngCompanyID)
 REFERENCES tblCompany (lngCompanyID)

ALTER TABLE tblCoverage
 ADD CONSTRAINT keyFKCoverageInsurance
 FOREIGN KEY (lngInsuranceID)
 REFERENCES tblInsurance (lngInsuranceID)

ALTER TABLE tblCoverage
 ADD CONSTRAINT keyFKCoverageEmployee
 FOREIGN KEY (lngEmployeeID)
 REFERENCES tblEmployee (lngEmployeeID)

ALTER TABLE tblClaim
 ADD CONSTRAINT keyFKClaimCoverage
 FOREIGN KEY (lngCoverageID)
 REFERENCES tblCoverage (lngCoverageID)

Database Architecture Wingenious

Database Architecture 42

CREATE INDEX idxCompany
 ON tblEmployee (lngCompanyID)
 WITH FILLFACTOR = 90

CREATE INDEX idxInsurance
 ON tblCoverage (lngInsuranceID)
 WITH FILLFACTOR = 90

CREATE INDEX idxEmployee
 ON tblCoverage (lngEmployeeID)
 WITH FILLFACTOR = 90

CREATE INDEX idxCoverage
 ON tblClaim (lngCoverageID)
 WITH FILLFACTOR = 90

IF EXISTS (SELECT * FROM sysobjects WHERE name = 'trgGRCICompany')
 DROP TRIGGER trgGRCICompany
GO
CREATE TRIGGER trgGRCICompany ON tblCompany
FOR INSERT
AS
SET NOCOUNT ON
UPDATE tblCompany SET dtmCreateDate = GETDATE()
 FROM tblCompany AS T JOIN Inserted AS I ON T.lngCompanyID = I.lngCompanyID
SET NOCOUNT OFF
GO

IF EXISTS (SELECT * FROM sysobjects WHERE name = 'trgGRCUCompany')
 DROP TRIGGER trgGRCUCompany
GO
CREATE TRIGGER trgGRCUCompany ON tblCompany
FOR UPDATE
AS
SET NOCOUNT ON
UPDATE tblCompany SET dtmModifyDate = GETDATE()
 FROM tblCompany AS T JOIN Inserted AS I ON T.lngCompanyID = I.lngCompanyID
SET NOCOUNT OFF
GO

IF EXISTS (SELECT * FROM sysobjects WHERE name = 'qryGROSCompany')
 DROP VIEW dbo.qryGROSCompany
GO
CREATE VIEW dbo.qryGROSCompany
AS
 SELECT TOP 100 PERCENT WITH TIES *
 FROM tblCompany WITH (NOLOCK)
ORDER BY lngCompanyID
GO

Database Architecture Wingenious

Database Architecture 43

IF EXISTS (SELECT * FROM sysobjects WHERE name = 'uspGRCDCompany')
 DROP PROCEDURE dbo.uspGRCDCompany
GO
CREATE PROCEDURE dbo.uspGRCDCompany
 @DBValue int,
 @DBAdmin tinyint = NULL
AS
DELETE tblCompany
 WHERE lngCompanyID = @DBValue
RETURN (@@ERROR)
GO

IF EXISTS (SELECT * FROM sysobjects WHERE name = 'uspGRCSCompany')
 DROP PROCEDURE dbo.uspGRCSCompany
GO
CREATE PROCEDURE dbo.uspGRCSCompany
 @DBValue int,
 @DBAdmin tinyint = NULL
AS
SELECT *
 FROM tblCompany WITH (NOLOCK)
 WHERE lngCompanyID = @DBValue
RETURN (@@ERROR)
GO

Database Architecture Wingenious

Database Architecture 44

Thanks for reading the Database Architecture document!

The document stressed several key points, with the most important being consistency in
database architecture. It also focused on complete Declarative Referential Integrity (DRI),
which includes primary key constraints and foreign key constraints. Attention was given to
indexing and taking advantage of the power of code generation. Wingenious encountered a
need to ensure consistency, complete DRI, efficient indexing, and robust routines in every
database it built and maintained. This critical task could not be done thoroughly by using
manual inspection, so Wingenious designed and developed a software tool.

The tool is called DBGizmo, and it’s incredibly useful for the purposes listed above. The
application has 17 tabs, with the first seven tabs (Home, Tables, Routines, SQL², SQL³,
Notes, Facts) containing the key features. The key features provide numerous ways to
analyze databases and generate powerful code for working with databases.

The Home tab provides many searching and scripting features, as well as quick access to
three lists of 10 (each) query data sets for database analysis.

The Tables tab provides convenient ways to browse table relationships and view column
definitions or associated objects.

The Routines tab provides convenient ways to review SQL routine dependencies and the
SQL code definitions.

The SQL² tab provides several options to generate handy SQL code for a wide variety of
mostly DDL operations.

The SQL³ tab provides two options to generate extremely powerful SQL code for various
common DML operations.

The Notes tab provides an editor for database object notes (extended properties), along
with options to save them for distribution.

The Facts tab provides a viewer for database facts/settings (database properties). It also
includes information about SQL Server Agent jobs.

DBGizmo is a great utility and it makes a perfect companion to the Database Architecture
document. There’s even a free edition with many amazing features!

Please visit http://www.DBGizmo.com to learn more.

http://www.DBGizmo.com

Database Architecture Wingenious

Database Architecture 45

DBGizmo Tabs

